PCOM Library / Hot Topics in Research / Archive for "Biomedical Sciences"

Category: Biomedical Sciences

Hot Topics: New Bile Acid Discovered

jackiewe Biomedical Sciences, Hot Topics in Research

Global chemical effects of the microbiome include new bile-acid conjugations

Quinn RA, Melnik AV, Vrbanac A, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020. https://doi.org/10.1038/s41586-020-2047-9.

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.

Hot Topics: Liquid Lab-on-a-Chip 3D Printed

jackiewe Biomedical Sciences, Hot Topics in Research, Pharmaceutical Sciences

Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices

Feng W, Chai Y, Forth J, Ashby PD, Russell TP, Helms BA. Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices. Nature Communications. 2019;10(1):1095. https://doi.org/10.1038/s41467-019-09042-y.

Systems comprised of immiscible liquids held in non-equilibrium shapes by the interfacial assembly and jamming of nanoparticle−polymer surfactants have significant potential to advance catalysis, chemical separations, energy storage and conversion. Spatially directing functionality within them and coupling processes in both phases remains a challenge. Here, we exploit nanoclay−polymer surfactant assemblies at an oil−water interface to produce a semi-permeable membrane between the liquids, and from them all-liquid fluidic devices with bespoke properties. Flow channels are fabricated using micropatterned 2D substrates and liquid-in-liquid 3D printing. The anionic walls of the device can be functionalized with cationic small molecules, enzymes, and colloidal nanocrystal catalysts. Multi-step chemical transformations can be conducted within the channels under flow, as can selective mass transport across the liquid−liquid interface for in-line separations. These all-liquid systems become automated using pumps, detectors, and control systems, revealing a latent ability for chemical logic and learning.

Hot Topics: Bioluminescence Sensors Evaluate Drug Pathways

jackiewe Biomedical Sciences, Hot Topics in Research, Pharmaceutical Sciences

Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors

Namkung Y, LeGouill C, Kumar S, et al. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Sci Signal. 2018;11(559). http://dx.doi.org/10.1126/scisignal.aat1631

G protein–coupled receptors (GPCRs) are important therapeutic targets that exhibit functional selectivity (biased signaling), in which different ligands or receptor variants elicit distinct downstream signaling. Understanding all the signaling events and biases that contribute to both the beneficial and adverse effects of GPCR stimulation by given ligands is important for drug discovery. Here, we report the design, validation, and use of pathway-selective bioluminescence resonance energy transfer (BRET) biosensors that monitor the engagement and activation of signaling effectors downstream of G proteins, including protein kinase C (PKC), phospholipase C (PLC), p63RhoGEF, and Rho. Combined with G protein and β-arrestin BRET biosensors, our sensors enabled real-time monitoring of GPCR signaling at different levels in downstream pathways in both native and engineered cells. Profiling of the responses to 14 angiotensin II (AngII) type 1 receptor (AT1R) ligands enabled the clustering of compounds into different subfamilies of biased ligands and showed that, in addition to the previously reported functional selectivity between Gαq and β-arrestin, there are also biases among G protein subtypes. We also demonstrated that biases observed at the receptor and G protein levels propagated to downstream signaling pathways and that these biases could occur through the engagement of different G proteins to activate a common effector. We also used these tools to determine how naturally occurring AT1R variants affected signaling bias. This suite of BRET biosensors provides a useful resource for fingerprinting biased ligands and mutant receptors and for dissecting functional selectivity at various levels of GPCR signaling.

Hot Topics: Some Seizures Start After Brain Inhibition

jackiewe Biomedical Sciences, Hot Topics in Research, Neurology

Low‐Voltage Fast Seizures in Humans Begin with Increased Interneuron Firing
Elahian B, Lado NE, Mankin E, et al. Low-voltage fast seizures in humans begin with increased interneuron firing. Annals of Neurology. 2018. https://doi.org/10.1002/ana.25325
Objective
Intracellular recordings from cells in entorhinal cortex tissue slices show that low‐voltage fast (LVF) onset seizures are generated by inhibitory events. Here, we determined whether increased firing of interneurons occurs at the onset of spontaneous mesial–temporal LVF seizures recorded in patients.
Methods
The seizure onset zone (SOZ) was identified using visual inspection of the intracranial electroencephalogram. We used wavelet clustering and temporal autocorrelations to characterize changes in single‐unit activity during the onset of LVF seizures recorded from microelectrodes in mesial–temporal structures. Action potentials generated by principal neurons and interneurons (ie, putative excitatory and inhibitory neurons) were distinguished using waveform morphology and K‐means clustering.
Results
From a total of 200 implanted microelectrodes in 9 patients during 13 seizures, we isolated 202 single units; 140 (69.3%) of these units were located in the SOZ, and 40 (28.57%) of them were classified as inhibitory. The waveforms of both excitatory and inhibitory units remained stable during the LVF epoch (p > > 0.05). In the mesial–temporal SOZ, inhibitory interneurons increased their firing rate during LVF seizure onset (p < 0.01). Excitatory neuron firing rates peaked 10 seconds after the inhibitory neurons (p < 0.01). During LVF spread to the contralateral mesial temporal lobe, an increase in inhibitory neuron firing rate was also observed (p < 0.01).
Interpretation
Our results suggest that seizure generation and spread during spontaneous mesial–temporal LVF onset events in humans may result from increased inhibitory neuron firing that spawns a subsequent increase in excitatory neuron firing and seizure evolution.

Hot Topics: Neurons Can Carry Simultaneous Signals

jackiewe Biomedical Sciences, Hot Topics in Research

Single neurons may encode simultaneous stimuli by switching between activity patterns
Caruso VC, Mohl JT, Glynn C, et al. Single neurons may encode simultaneous stimuli by switching between activity patterns. Nature Communications. 2018;9(1):2715. https://doi.org/10.1038/s41467-018-05121-8.
How the brain preserves information about multiple simultaneous items is poorly understood. We report that single neurons can represent multiple stimuli by interleaving signals across time. We record single units in an auditory region, the inferior colliculus, while monkeys localize 1 or 2 simultaneous sounds. During dual-sound trials, we find that some neurons fluctuate between firing rates observed for each single sound, either on a whole-trial or on a sub-trial timescale. These fluctuations are correlated in pairs of neurons, can be predicted by the state of local field potentials prior to sound onset, and, in one monkey, can predict which sound will be reported first. We find corroborating evidence of fluctuating activity patterns in a separate dataset involving responses of inferotemporal cortex neurons to multiple visual stimuli. Alternation between activity patterns corresponding to each of multiple items may therefore be a general strategy to enhance the brain processing capacity, potentially linking such disparate phenomena as variable neural firing, neural oscillations, and limits in attentional/memory capacity.

Hot Topics: Computers Trained to Visually Analyze Living Cells

jackiewe Biomedical Sciences, Hot Topics in Research

In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images
Christiansen EM, Yang SJ, Ando DM, et al. In silico labeling: Predicting fluorescent labels in unlabeled images. Cell. 2018;173(3):803.e19. doi: S0092-8674(18)30364-7.
Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call “in silico labeling” (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire.

Hot Topics: Virtual Reality Used to Study How Memories Are Formed

jackiewe Biomedical Sciences, Hot Topics in Research, Neurology

CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields
Dimsdale-Zucker H, Ritchey M, Ekstrom AD, Yonelinas AP, Ranganath C. CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature Communications. 2018;9(1):294. https://doi.org/10.1038/s41467-017-02752-1.
The hippocampus plays a critical role in spatial and episodic memory. Mechanistic models predict that hippocampal subfields have computational specializations that differentially support memory. However, there is little empirical evidence suggesting differences between the subfields, particularly in humans. To clarify how hippocampal subfields support human spatial and episodic memory, we developed a virtual reality paradigm where participants passively navigated through houses (spatial contexts) across a series of videos (episodic contexts). We then used multivariate analyses of high-resolution fMRI data to identify neural representations of contextual information during recollection. Multi-voxel pattern similarity analyses revealed that CA1 represented objects that shared an episodic context as more similar than those from different episodic contexts. CA23DG showed the opposite pattern, differentiating between objects encountered in the same episodic context. The complementary characteristics of these subfields explain how we can parse our experiences into cohesive episodes while retaining the specific details that support vivid recollection.

Hot Topics: New Technique “Hotwires” Cells to Induce Endocytosis on Demand

jackiewe Biomedical Sciences, Hot Topics in Research

New tools for “hot-wiring” clathrin-mediated endocytosis with temporal and spatial precision
Wood LA, Larocque G, Clarke NI, Sarkar S, Royle SJ. New tools for “hot-wiring” clathrin-mediated endocytosis with temporal and spatial precision. J Cell Biol. 2017. http://dx.doi.org/10.1083/jcb.201702188.
Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is difficult because the initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. A clathrin-binding protein fragment (“hook”) is inducibly attached to an “anchor” protein at the plasma membrane, which triggers the formation of new clathrin-coated vesicles. Our design incorporates temporal and spatial control by the use of chemical and optogenetic methods for inducing hook–anchor attachment. Moreover, the cargo is defined. Because several steps in vesicle creation are bypassed, we term it “hot-wiring.” We use hot-wired endocytosis to describe the functional interactions between clathrin and AP2. Two distinct sites on the β2 subunit, one on the hinge and the other on the appendage, are necessary and sufficient for functional clathrin engagement.

Hot Topics: Transcriptional Regulator CTCF Found Essential in Immune Response

jackiewe Biomedical Sciences, Hot Topics in Research

CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation
Pérez-Garcí­a A, Marina-Zárate E, Álvarez-Prado ÁF, Ligos JM, Galjart N, Ramiro AR. CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nature Communications. 2017;8:16067. http://dx.doi.org/10.1038/ncomms16067.
In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin gene modification before they differentiate into memory B cells or long-lived plasma cells (PC). GC B-cell-to-PC transition involves a major transcriptional switch that promotes a halt in cell proliferation and the production of secreted immunoglobulins. Here we show that the CCCTC-binding factor (CTCF) is required for the GC reaction in vivo, whereas in vitro the requirement for CTCF is not universal and instead depends on the pathways used for B-cell activation. CTCF maintains the GC transcriptional programme, allows a high proliferation rate, and represses the expression of Blimp-1, the master regulator of PC differentiation. Restoration of Blimp-1 levels partially rescues the proliferation defect of CTCF-deficient B cells. Thus, our data reveal an essential function of CTCF in maintaining the GC transcriptional programme and preventing premature PC differentiation.