Hot Topics: Transcriptional Regulator CTCF Found Essential in Immune Response

Jackie Werner Biomedical Sciences, Hot Topics in Research

CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation

Pérez-Garcí­a A, Marina-Zárate E, Álvarez-Prado ÁF, Ligos JM, Galjart N, Ramiro AR. CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nature Communications. 2017;8:16067. http://dx.doi.org/10.1038/ncomms16067.

In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin gene modification before they differentiate into memory B cells or long-lived plasma cells (PC). GC B-cell-to-PC transition involves a major transcriptional switch that promotes a halt in cell proliferation and the production of secreted immunoglobulins. Here we show that the CCCTC-binding factor (CTCF) is required for the GC reaction in vivo, whereas in vitro the requirement for CTCF is not universal and instead depends on the pathways used for B-cell activation. CTCF maintains the GC transcriptional programme, allows a high proliferation rate, and represses the expression of Blimp-1, the master regulator of PC differentiation. Restoration of Blimp-1 levels partially rescues the proliferation defect of CTCF-deficient B cells. Thus, our data reveal an essential function of CTCF in maintaining the GC transcriptional programme and preventing premature PC differentiation.